EN 173 Lab Guides
Lab 3

Version 2026, 2025-03-04

Slide switches and momentary push buttons

Selecting external LEDs with a slide switch

In this example a slide switch (single pole, double throw) is used to create either a high voltage or
low voltage on a digital input. If the input is high, a red LED will flash. If the input is low, a green
LED will flash.

Construct the circuit shown in Figure 1 (breadboard view) and Figure 2 (circuit diagram) on your
breadboard. The apparent lengths of the LED legs in this diagram are solely due to how far they
had to travel to reach their proper holes. The long leg of each LED should be connected to the
microcontroller pins.

mmmmmm

uuuuuuuuuuuuuu B
> >

{J
Ll *
Ll L
L L
L e o

Figure 1. View of the breadboard for the two LED circuit with switch selection.

VDD
VDD
RESET

U1

—o = voD
N = 5V
—0 —— GND
GND
— NC
LED2
R1 Green (555nm) P0.03 (A0}
330Q A\ d P0.04
\— —m P0.28
P0.29
AN /: P0.30
— AN "k:k—-] P0.31
R2 LED1
330Q Red (633nm) S

Figure 2. Circuit diagram for the two LED circuit with switch selection.
1. Create a new application and enter the code shown in Program 1 into main.c.

Program 1. Flash red or green LED depending on switch position.

#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>

#include <zephyr/device.h>
#define SLEEP_TIME_MS 200

/* Get node identifiers using label */ @
#define RED_NI DT_NODELABEL(red_led)
#define GREEN_NI DT_NODELABEL(green_led)
#define SWITCH NI DT_NODELABEL(slider)

/* Get gpio specs */

const struct gpio_dt_spec redLED = GPIO_DT_SPEC_GET(RED_NI, gpios);

const struct gpio_dt_spec greenLED = GPIO_DT_SPEC_GET(GREEN_NI, gpios);
const struct gpio_dt_spec slideSwitch = GPIO_DT_SPEC_GET(SWITCH_NI, gpios);

int main() {
if (device_is_ready(redLED.port)) { @
gpio_pin_configure_dt(&redLED, GPIO_OUTPUT_ACTIVE);
gpio_pin_confiqure_dt(&greenLED, GPIO_OUTPUT_ACTIVE);
gpio_pin_confiqure_dt(&slideSwitch, GPIO_INPUT);
} else return -1;

while (true) {
if (gpio_pin_get_dt(&slideSwitch)) { ®
gpio_pin_toggle_dt(&redLED);
k_msleep(SLEEP_TIME_MS);
} else {
gpio_pin_toggle_dt(&greenLED);
k_msleep(SLEEP_TIME_MS);

@ It is possible to get node identifiers using node labels rather than using an alias. The alias
approach is best when a program is meant to run on many different boards, each of which
may have reasons for choosing other node labels for various components. However, if you
are just developing for a single board then the node label approach avoids extra code in the
overlay file.

@ All of the pins that were selected are on the same port. If the port controller is ready, it is
ready for all of them. The device_is_ready method is a more general test of readiness that
works with both GPIO controllers and much more.

® Get the state of slide switch. A value of true (equivalent to 1) means the middle pin of the
slide switch is connected to the high voltage. If that is the case, flash the red LED. Otherwise,
flash the green LED.

2. Select [Add build configuration panel] through the nRF Connect side bar and select our board
as the target. Uncheck the Build after generating configuration box so the final button
becomes [Generate Configuration]. Click on this button.

3. In the Actions section of the nRF Connect side panel, hover over the Devicetree entry to reveal
the more options indicator (three dots) on the right. From that, select Create overlay.

4. Select [Skip] as the next step from the Overlay file created dialog.
5. Add the following to the nrf52840dk_nrf52840.overlay file that was created.

Program 2. The overlay file allows us to configure both input and output pins.

/{
leds {
red led: led 4 { @
gpios = <&gpio@ 29 GPIO_ACTIVE_HIGH>;
Jrs
green_led: led_5 {
gpios = <&gpiod 28 GPIO_ACTIVE_HIGH>;
s
s
buttons { @
slider: button 4 { ®
gpios = <&gpio@ 3 GPIO_ACTIVE_HIGH>; @
g
s
I

@ Our first new node in the devicetree has a node identifier of 1ed_4 and a label of red_led. We
are using the label rather than an alias to access this node in main.c.

@ A button section exists in the devicetree for GPIO inputs. We are adding an entry to this
section.

® Our external slide switch is given the label slider and has the node identifier button_4
(button_0 through button_3 are the buttons on the development board).

@ This switch is connected to P0.03 and will have a true value when the voltage is high.
6. You now want to perform a pristine build because the devicetree has been altered. The pristine

build option can be found in the Actions section of the nRF Connect side panel. Hovering over
Build will reveal the pristine build icon. Click on it.

7. Use the Flash action to send the program to your board. If everything has been done correctly,
in one position of the switch the red LED will flash and if it is slid into the other position the
green LED will flash.

o Demonstrate that you have successfully assembled this circuit and downloaded
this program.

0 Leave the circuit connected. You will use the same hardware setup in the next
exercise.

Counting slide switch transitions

You will now count the number of times the switch has changed position. Zephyr’s logger module
will be used to display the result on a computer through a terminal connection.

Exercise 3.1

1. Create a new application.

2. Zephyr’s logger module is not enabled by default. We need to request that it be included in
the application by editing the prj.conf file. Add the following line to this file:

CONFIG_LOG=y

3. Add a build configuration and create a devicetree overlay. The contents should be the same
as in the previous program (Program 2).

4. Enter the contents of Program 3 into main.c.

Program 3. Count switch transitions and display using logger.

#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/device.h>
#include <zephyr/logging/log.h> @

/* Get node identifiers using label */
#define RED_NI DT_NODELABEL(red_led)
#define GREEN_NI DT_NODELABEL(green_led)
#define SWITCH NI DT_NODELABEL(slider)

/* Get gpio specs */

const struct gpio_dt_spec redLED = GPIO_DT_SPEC_GET(RED_NI, gpios);

const struct gpio_dt_spec greenLED = GPIO_DT_SPEC_GET(GREEN_NI, gpios);
const struct gpio_dt_spec slideSwitch = GPIO_DT_SPEC_GET(SWITCH_NI, gpios);

/* Register with logger */
L0OG_MODULE_REGISTER(S1lideCounter, LOG_LEVEL_DBG); @

int main() {
bool currentSwitchValue, previousSwitchValue; ®
int n = @; // slide counts

LOG_INF("Slider counter program starting"); @

if (device_is_ready(redLED.port)) {
gpio_pin_confiqure_dt(&redLED, GPIO_OUTPUT_ACTIVE);
gpio_pin_configure_dt(&greenLED, GPIO_OUTPUT_INACTIVE);
gpio_pin_configure_dt(&slideSwitch, GPIO_INPUT);

} else {
LOG_ERR("GPIO port is not ready"); ®
return -1;

}

k_msleep(100);

previousSwitchValue = gpio_pin_get_dt(&slideSwitch);

while (true) {

currentSwitchValue = gpio_pin_get_dt(&slideSwitch); ®

if (currentSwitchValue != previousSwitchValue) { @
n++: @
previousSwitchValue = currentSwitchValue;
LOG_INF("Slide counts = %d", n); ©
gpio_pin_toggle_dt(&redLED);
gpio_pin_toggle_dt(&greenLED);

@ Using the logger module requires this header file.

@ We need to register our application with the logger module. The name given to our
application in the logger is SlideCounter and all log levels (debug through error) will be
displayed.

® The states of the switch will be held in boolean (true/false) variables.
@ Send a welcome message to logger so we will know when the code restarts.

® Display an error message that might help us if the GPIO controller was not ready for us
to configure the pins.

® Reading the value of the switch once per time through the loop prevents logic problems
that could result if the switch moved midway through the loop.

@ The logic operator != means “not equal” so this if statement will be triggered when the
switch changes from on to off or from off to on.

This is shorthand forn = n + 1.

© Submit a log message with the %d replaced by the value of n.

5. Build the application and flash it to your development board.
6. In the nRF Connect side panel:

a. Open the Connected Devices section.

A

B *~ CONMECTED DEVICES
~ L3 1050219142
{"F NRF52840_xxAA_REV3
(] vcomo com
[vcoM1 coms
B RTT

¥ Pmant® b ®0A0D16 W0 & LveShare Git Graph

Figure 3. Open a terminal connection to the microcontroller.

b. With only one microcontroller connected to the computer you should see only one
entry. The number is the serial number of your particular development board. Expand
this section.

c. Hover over the first VCOM entry to reveal the port icon on the right side. Click on this.

d. The default settings should be correct, so select the one option you are given.

Serial Port Connection: Device

1050219142 VCOMO COM7 Connected devices &3
115200 8n1 risctszoff

Figure 4. Select the default terminal settings (115200 baud).

7. Press the reset button on your development board. It is the push button set off by itself. You
should see something similar to the following in the terminal window in VS Code.

TERMIMNAL

*®=¢ Booting nRF Connect SDK v3.5.99-ncsl-1
[6&:088:08.251,434] <inf> SlideCounter: Slider counmter program starting

Figure 5. Start up logs from the slide counter application.

8. Now slide the switch to a new position. You might have expected a log message to appear,
but it did not. This is because the logger is a low-priority task and only sends messages to
the terminal when the main application lets it (for example, by sleeping);

9. Modify the code in main.c, adding k_msleep(1); as the first line inside the while loop.
10. Build the revised program and flash the board again.

11. Test the revised program, sliding the switch back and forth. Does it always behave as
expected?

Exercise 3.2

Using the same circuit as in the previous exercise (with the red and green LEDs), replace the
slide switch with a momentary push button. This is a SPST (single pole, single throw) button
despite having four terminals. However, pairs of terminals are connected so there are really
only two independent terminals. When the button is pushed down, the terminals on opposite
sides are connected. You want one of these terminals connected to VDD (the positive power
bus) and the other terminal connected to pin P0.03.

With this configuration, the behavior when the button is released will be unpredictable. You
need to modify the devicetree overlay to configure the input pin with an internal pull-down
resistor (bringing the pin down to ground whenever the button is released).

In the buttons section of the overlay, replace the slider switch configuration with the following:

Program 4. Configuring the push-button input with a pull-down resistor

buttons {

pb: button_4 { @
gpios = <&gpiod 3 (GPIO_ACTIVE_HIGH | GPIO_PULL_DOWN)>; @
s
75

@ The node label was been changed to pb, short for push button. You will need to change your

code in main.c accordingly.

@ The additional pull-down configuration is added using C’s bit-wise OR (|) to combine the

two settings. We will learn about bit-wise logic later.

You should observe that a single push of the button sometimes results in more than a change
of 2 in the counts. This occurs because of something called button bounce.

Exercise 3.3

In this exercise you will use the oscilloscope to observe what happens when the button is
pressed.

1.

10.

Connect the flywire labeled 1+ (top left, orange) to the same column as the output pin of the
button (the one that is connected to P0.03). Connect the flywire labeled 1- (bottom left,
orange with white stripe) to the ground bus strip. Connect the ground () flywire to the
ground bus strip.

In the Time settings, change Position to 5 yus and Base to 2 ps/div.
In the Channel 1 settings, change Offset to -2 V and Range to 500 mV/div.

In the Trigger settings (above the graph), set Mode to Repeated and Normal and set Level to
2V.

Click the [Run] acquisition button to repeatedly capture rising transitions without the
need to restart.

Push the button, paying attention to the count and the WaveForms display. What do you
observe?

Push and release the button until you observe the counter move forward to the expected
count of 2. You will now save the corresponding oscilloscope capture to a Word document.
Select File » Export and then select the Image tab. Under Comments, type “Button press,
normal”. Uncheck Device, Serial Number, and Time. Then click on [Copy to Clipboard].

Create a new Word document and paste your oscilloscope capture into it.

Now push and release the button until you observe the counter jumping forward by more
than a count of 2. Export this oscilloscope capture with the comment “Button press, skip”
and add it to your Word document.

In your Word document, write a brief description of the differences you observe in the two
oscilloscope captures.

Photointerrupter

You will assemble a circuit with a photointerrupter that will be used to signal the microcontroller to
turn on one of the internal LEDs whenever the beam is interrupted.

1. Build the circuit according to the diagram in Figure 6 and with the help of the pinout in Figure
7.

PO.03 (A

VDD
GND

=t P0.25
P0.23
== RESET
w— DETECT
sl /DD
w— RESET
w1 0D
=l GND
N C
) (.04
) P0.28
a— (.29
= P0.20
] P0.31

%

R2
10kQ

Optointerrupter (H21A1)
AR
R1

330Q

Figure 6. Diagram for the photointerrupter circuit.

H21A1
—>
1 4 —>
©QlE| [S[®
2 3
|
2 4
1 3

Figure 7. Pinout diagram for the photointerrupter.

2. After you have assembled the circuit, create a new application.
3. Generate a build configuration and then create an overlay.

4. The overlay only needs to contain information about the photointerrupter. We are treating it as
type of button.

/H{

buttons {
photointerrupter: button_4 {
gpios = <&gpio® 3 GPIO_ACTIVE_HIGH>;
s
7
bt

5. Enter Program 5 into main.c, build it, and then flash to your microcontroller.

Program 5. LED indicates when photointerrupter is blocked.

#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>

#define LED_NI DT_ALIAS(1led®)
#define PHOTO_NI DT_NODELABEL(photointerrupter)

const struct gpio_dt_spec led = GPIO_DT_SPEC_GET(LED_NI, gpios);
const struct gpio_dt_spec photo = GPIO_DT_SPEC_GET(PHOTO_NI, gpios);

int main() {
if (gpio_is_ready_dt(&led) && gpio_is_ready_dt(&photo)) {
gpio_pin_confiqure_dt(&led, GPIO_OUTPUT_ACTIVE);
gpio_pin_configure_dt(&photo, GPIO_INPUT);
} else return -1;

while (true) {
if (gpio_pin_get_dt(&photo)) {
gpio_pin_set_dt(&led, 1);
} else {
gpio_pin_set_dt(&led, 0);

}
}
}
o Demonstrate your operating circuit.
Your Turn

The directions that follow are intended for students in my Introduction to
Embedded Systems course at Whitworth University. However, an alternative link to
a template is provided for non-Whitworth students.

Assignment 3.1

Your task is to create a system that counts “letters” using a photointerrupter, displaying the
count on an attached computer using the logger module. An internal button is used to reset the

count to zero.

https://www.whitworth.edu

10

© ©® N o

. Access the GitHub Classroom link for this assignment on Blackboard and create a

repository for your work.

If you are not a Whitworth student in EN 173 you may access a starting
o template at https://github.com/EmbedUni/lab03-yt1. You will want to click
on the [Use this template] button.

A code repository was created when you accessed the assignment. Copy the URL for the
repository.

Open the Source Control side bar in VS Code and clone the repository.

Generate a build configuration and devicetree overlay. In the overlay file, add the code
needed to configure the photointerrupter.

Enable the logger module in prj.conf.

Assemble the photointerrupter circuit on a breadboard.
Modify main.c so it accomplishes the task described above.
Test your program.

Update the README . md.

When your program and circuit are working successfully, remember to push
o the commits to the remote repository. Also, take a video of its successful
operation and upload this to Blackboard.

https://github.com/EmbedUni/lab03-yt1

	EN 173 Lab Guides: Lab 3

