EN 173 Lab Guides
Lab 6

Version 2025, 2025-01-20

Getting started with analog input

In this exercise you will read an analog input (created with a potentiometer). The value received by
the microcontroller will be sent using the logger to the host computer via USB and viewed using a
terminal program.

Unlike general digital input and output, only certain pins can be mapped to the ADC on the
nRF52840, but which pins are mapped to particular channels is determined by the user. The
available analog pins are given symbolic names, specified in Table 1.

Table 1. Analog input pin names on the nRF52840.

GPIO
P0.02
P0.03
P0.04
P0.05
P0.28
P0.29
P0.30
P0.31
VDD

1. Create a new application.

Analog input name

AINO
AIN1
AIN2
AIN3
AIN4
AINS
AING6
AIN7
VDD

Arduino label

A0
Al

A2
A3
A4
AS

2. Edit prj.conf to enable both logging and analog-to-digital conversion.

Program 1. The ADC and logging modules must be enabled in prj.conf.

3. Generate a build configuration and create an overlay.

CONFIG_LOG=y
CONFIG_ADC=y

4. Edit the overlay file.

Program 2. An ADC channel is specified and made available in the overlay.

/H{

+

zephyr,user { @

jo-channels = <&adc 0>; @

+

&ade {

#address-cells = <1>;
#size-cells = <0>;

status = "okay";

channel@d {
reg = <@>;
zephyr,reference = "ADC_REF_INTERNAL"; ®
zephyr,gain = "ADC_GAIN_1_6"; @
zephyr,acquisition-time = <ADC_ACQ_TIME_DEFAULT>;
zephyr,input-positive = <NRF_SAADC_AINO>; ®
zephyr,resolution = <12>; ®

i

brr

® The zephyr,user node of the devicetree is a special node that does not require a
corresponding binding file.

@ Channel 0 of the ADC is connected to the io-channels property.
® Uses a 0.6 V reference that is internal to the ADC.

@ Sets the gain to 1/6 so the voltage on the input pin is scaled to not exceed the reference
voltage. There are additional limits on an input pin: its voltage should never fall below
ground or exceed the board’s VDD (nominally 3.0 V).

® If using the nRF52840, this connects P0.02 to this channel of the ADC. See Table 1.

® Use the full 12-bit resolution of the ADC. The analog-to-digital converter (ADC) on the
nRF52840 has a maximum resolution (in normal operating mode) of 12 bits.

5. Enter Program 3 into main.c.

Program 3. Read an analog input and print its value in both raw and millivolt format.

#include <zephyr/kernel.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/logging/log.h>

LOG_MODULE_REGISTER(Lab6_Program1, LOG_LEVEL_DBG);
const struct adc_dt_spec adc_channel = ADC_DT_SPEC_GET(DT_PATH(zephyr_user)); @

int main(void) {

int err;

uint16_t buf; @

int val.mV; ®

struct adc_sequence pot_reading = { @
.buffer = &buf, ®
.buffer_size = sizeof(buf) ®

g

if (ladc_is_ready_dt(&adc_channel)) {
LOG_ERR("ADC controller device is not ready");
return -1;

}

err = adc_channel_setup_dt(&adc_channel); @

if (err < 0) {
LOG_ERR("Could not setup channel.");
return -1;
}
err = adc_sequence_init_dt(&adc_channel, &pot_reading); @&
if (err < 0) {
LOG_ERR("Could not initialize ADC sequence.");
return -1;

}

while (true) {
err = adc_read_dt(&adc_channel, &pot_reading); ©
if (err < 0) {
LOG_ERR("Could not read");
continue;
}
val_mV = (int)buf;
err = adc_raw_to_millivolts_dt(&adc_channel, &val mV); @
if (err < 0) {
LOG_INF("ADC reading: raw = %d", buf);
} else {
LOG_INF("ADC reading: raw

%d, volts = %d mV", buf, val_mV);

}
k_msleep(2000);

@ The zephyr,user node did not have a label or an alias. To refer to it, we needed to use its path.
Devicetree names can include commas and dashes, put those must be changed to
underscores when referring to them in C code. Thus the zephyr,user node is referenced with
the name zephyr_user.

@ Declare an unsigned (non-negative) 16-bit integer variable to hold the raw reading from the
ADC.

® An int in Zephyr is a signed 32-bit integer.

@ The ADC requires an adc_sequence structure. This one is named pot_reading (pot is common
shorthand for potentiometer). There are additional elements of this structure that could be
specified, but in this program only the essentials will be set: buffer and buffer_size.

® When an & is placed before a variable name in C, it indicates that the memory address itself
of this variable is retrieved, rather than the value stored at that location. By telling the ADC
this memory address, it will be able to put values there (which we will access using the usual
name, via the name buf).

® It is possible for an ADC to read multiple values. When it does that, it starts writing the first
value at the address specified by buffer and subsequent values are placed in the following
memory addresses. The ADC needs to be told how many memory addresses have been set
aside for this so it doesn’t write to a memory address that is being used for something else.
The sizeof returns the number of bytes associated with a particular variable. For a 16-bit
unsigned integer, that is 2 bytes.

10.
11.

@ Preparing the ADC for use is a two-step process. First, the ADC channel is configured.
The second step is to link an adc_sequence structure to the ADC channel.

© Calling adc_read_dt triggers the actual analog-to-digital conversion. That value is stored in
buf (remember that pot_reading contained its memory address).

This is an example of type casting. It takes a 16-bit unsigned integer and reformats it as a 32-
bit signed integer. At this point val_mV holds the same value as buf, but in a different sized
container.

@ The memory location of val_mV is given to adc_raw_to_millivolts_dt. It uses this to read the
raw value stored there. It then uses its knowledge of the ADC settings to convert that raw
value to one in millivolts. The memory location is then used to update val_mV so it instead has
the value in millivolts.

Make a connection between GND on the development board and the ground bus on a
breadboard.

Make connection between VDD on the development board and a power bus on the breadboard.
It will be more convenient if it is the power bus adjacent to the ground bus that you connected
in the previous step.

Connect the black wire of the potentiometer to the ground bus and the red wire to the power
bus.

Connect the green wire of the potentiometer to a terminal strip on the breadboard. Also make a
connection from that terminal strip to P0.02.

Build your application and flash it to the development board.

Observing the log messages printed to the terminal, turn the potentiometer knob. The low end
of the range should be close to 0 V and the high end of the range should be 3.0 V if you are
powering your development board via USB.

Exercise 6.1
1. Connect the 1+ flywire of the Analog Discovery to the same terminal strip as the green wire
of the potentiometer.

2. Connect both the 1- and , flywires to ground.

3. Start Waveforms and open the Voltmeter application. Click [Run] to continuously update
the readings.

4. Using the voltmeter as a guide, adjust the potentiometer knob until you produce a DC
voltage of 1.5 V (as close as possible). Record the two analog input values reported by the
microcontroller (the raw value and the millivolt value).

5. Repeat these measurements for potentiometer settings producing voltmeter readings of 0.1
Vand 2.9 V.

Measuring light with a light-dependent-resistor

You will be using a light-dependent resistor (photocell). Your goal is to determine the best resistor to

use in the voltage divider so you get maximum sensitivity under the conditions you might
encounter indoors.

Exercise 6.2

1. Construct a voltage divider consisting of a 10 kQ resistor and the LDR, with the resistor
connected to the power bus and the LDR connected to the ground bus. Connect a wire to
the junction between the resistor and the LDR. The other end of the wire should go to
P0.02.

2. Using Program 3, record the millivolt reading for the following conditions:
a. the LDR is covered
b. the LDR is exposed to bright light (such as the “flashlight” of a smartphone)
3. Repeat the light and dark measurements for two other resistors: 4.7 kQ and 47 kQ.

4. For the particular LDR that you have, which resistor should you choose to get the greatest
difference between the light and dark readings?

Measuring temperature with an analog sensor

The TMP36 is an analog temperature sensor working over the range -40°C to +125°C. The TMP36
produces a voltage of 750 mV when it is at a temperature of 25°C. Each 1°C temperature increase
causes the voltage to increase by 10 mV. It comes in a standard package called TO-92-3, as shown in
Figure 1. Many other things come in the same package so carefully look for the TMP36 label in tiny
print on its face.

Figure 1. Pinout diagram for the TMP36 temperature sensor.

Previous examples have used a gain setting of 1/6, permitting input voltages up to 3.0 V (VDD). If we

are using this to measure room air temperatures we might never expect a temperature above 40°C.
This means the highest voltage that should be produced by the TMP36 is 900 mV. The goal is to
select a gain setting that brings 900 mV to under 600 mV (the internal voltage reference of the ADC),
but as close to it as possible. Given the possible options, a gain of 1/2 is the best fit to our criteria.

The long jumper wires commonly used while prototyping can pick up electromagnetic noise on this
scale, so we will reduce that noise through averaging. The ADC can be configured to make multiple
measurements as part of a single read command. We can also improve performance clustering the
wires going to the ADC, GND, and VDD. To do this, we will switch the analog input to AIN1 (P0.03).

The zephyr,user node is not the only place we can use an ADC. In this exercise you will begin the
work that would be needed to create a device driver for the Analog Device’s TMP36. That requires
creation of the appropriate binding file, similar to what was done previously with the servo.

1.

10.

Connect pin 1 of the TMP36 (the left leg when looking at its flat front) to the power bus strip. The
power bus strip should be connected to the development board VDD.

Connect pin 2 of the TMP36 (the middle leg) to P0.03

Connect pin 3 of the TMP36 (the right leg) to the ground bus. As usual, the ground bus should
also be connected to the development board GND.

Create a new application.

Create a new folder named dts at the top-level of your application (not inside any folder other
than the one holding application itself). Inside of the dts folder create another folder bindings.

Create a file named adi, tmp36.yaml inside of the bindings folder. It is standard practice to name
a binding file as follows:

Begin with an abbreviated form of the manufacturer’s name. In this case the customary
abbreviation for Analog Devices is adi (the same as its stock ticker).

This is followed by a comma and then the model of the device.
All of this is done using lowercase.

Add the following to that binding file:

description: Analog Devices analog temperature sensor TMP36
compatible: "adi,tmp36"
include: sensor-device.yaml
properties:
io-channels:
required: true
description: ADC channel for temperature sensor
vtemp25:
type: int
default: 750
description: |
Temperature sensor voltage at 25 degrees Celsius
in millivolts
sensor-slope:
type: int

default: 10
description: |
Temperature sensor slope in millivolts per degree Celsius

11. Generate a build configuration and create an overlay.

12. Edit the overlay file. We are going to add the TMP36 using the binding just created.

&ade {

#address-cells = <1>;

#size-cells = <0>;

status = "okay";

channel@d {
reg = <0>;
zephyr,gain = "ADC_GAIN_1_2";
zephyr,reference = "ADC_REF_INTERNAL";
zephyr,acquisition-time = <ADC_ACQ_TIME_DEFAULT>;
zephyr,input-positive = <NRF_SAADC_AINT>;
zephyr,resolution = <12>;

/A{
temp@: temp@ {
compatible = "adi,tmp36";
io-channels = <&adc 0>;
T
i

13. Edit prj.conf to enable analog-to-digital conversion, logging, and output of floating point
numbers.

CONFIG_ADC=y
CONFIG_LOG=y
CONFIG_CBPRINTF_FP_SUPPORT=y

14. You are now ready for the actual application code in main.c.

Program 4. Measure temperature using a TMP36 analog sensor.

#include <zephyr/kernel.h>

#include <zephyr/drivers/adc.h>
#include <zephyr/logging/log.h>
#include <zephyr/devicetree.h>

LOG_MODULE_REGISTER(AnalogTemp, LOG_LEVEL_DBG);

#define NUM_ADC_READINGS 10

#define TMP36 DT_NODELABEL(temp®)
const struct adc_dt_spec tmp36 = ADC_DT_SPEC_GET(TMP36);

/* Use DT_PROP() to get volt-to-temp parameters */
#define MV_AT_25C DT_PROP(TMP36, vtemp25)
#define MV_PER_DEG_C DT_PROP(TMP36, sensor_slope)

int main(void) {

int err;

uint16_t buf[NUM_ADC_READINGS]; @®

int val_mV;

float avg_mV; @

float T_in_C;

struct adc_sequence_options options = { ®
.extra_samplings = NUM_ADC_READINGS-1, @
.interval_us = 100 ®

Irs

struct adc_sequence tmp_reading = {
.options = &options, ®
.buffer = buf,
.buffer_size = sizeof(buf) @

};

if (ladc_is_ready_dt(&tmp36)) {
LOG_ERR("ADC controller device is not ready");
return -1;
}
err = adc_channel_setup_dt(&tmp36);
if (err < 0) {
LOG_ERR("Could not setup channel.");
return -1;
}
err = adc_sequence_init_dt(&tmp36, &tmp_reading);
if (err < 0) {
LOG_ERR("Could not initialize ADC sequence.");
return -1;

}

while (true) {

err = adc_read_dt(&tmp36, &tmp_reading);

if (err < 0) {
LOG_ERR("Could not read. Error code %d", err);
k_msleep(2000);
continue;

}

avg_mV = 0.0;

for (int i = @; i < NUM_ADC_READINGS; i++) { ©
val_mV = (int)buf[i];
adc_raw_to_millivolts_dt(&tmp36, &val_mV);
avg_mV = avg_mV + (float)val_mV; @

avg_mV = avg_mV/NUM_ADC_READINGS; @

T_in_C = 25.0 + (avg_mV - (float)MV_AT_25C)/(float)MV_PER_DEG_C; @
LOG_INF("T = %.1f deg C", T_in_C); ®

k_msleep(5000);

@ The buffer for ADC values must now be an array because multiple values will be read.

@ A float is required to store the average of multiple measurements because it will result in a
non-integer value.

® A structure to hold optional values that can be used when configuring an adc_sequence.

@ One measurement always take place in an ADC reading. This is the number of additional
readings so it is one less than the total number of readings.

® The time between the start of sequential ADC conversions, in microseconds. Note that it is
not the time between the completion of one conversion and the beginning of the next. This
means that if it is set to less than the time required for a single conversion to complete, an
error will be generated.

® The options previously stored are now added to the adc_sequence structure.
@ This is the size of the buffer (in bytes).

This variable will first be used to accumulate the sum of the measurement values. It must be
set to 0 before those values are added to it.

© A loop over all of the measurements.

@ Cast each measured millivolt value from an integer to a float before adding it to the
accumulating sum.

@ The average is calculated by dividing the sum by the number of measurements.
@® Convert the average millivolt reading to a temperature using the sensor parameters.

@® The temperature is a floating point number so it must be displayed using the %f specifier.
The .1 between the % and the f indicates that it should be displayed to the tenths place.

Revisiting digital input

In this exercise you will revisit digital input, using the potentiometer to create a variable voltage
but with the input now configured as digital, rather than analog. You will observe the digital logic
levels.

Exercise 6.3

1. Connect VDD to the power bus on the breadboard, GND to the ground bus, and P0.02 to row
30.

2. Connect the potentiometer with the red lead to the power bus, the black lead to the ground
bus, and the green lead to row 30.

3. Connect the 1+ flywire of the Analog Discovery 2 to row 30. Connect 1- and «, to the

10.

11.

12.

ground bus.

Create a new project containing Program 5. You will also need to generate an overlay
defining P0.02 as a digital input called ext_input (no pull-up or pull-down resistors are
needed).

Build and flash the application to your microcontroller.

Start Waveforms and open the Voltmeter application. Click [Run] to continuously update
the readings.

Turn the potentiometer knob until the DC voltage reads 0.
Slowly turn the potentiometer knob until the LED turns on. Record the voltage.

Continue turning the potentiometer to produce an increasing voltage until the DC voltage
reads 3.0 V.

Slowly turn the potentiometer knob the other way until the LED turns off. Record this
voltage.

Starting from here, increase the voltage again until the LED turns on. Do you get the same
voltage as you did the first time?

Decrease the voltage until the LED turns off. Is the voltage consistent with what you found
earlier?

Program 5. Read a digital input and turn an LED on or off based on the input.

10

#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>

#define LED_NI DT_ALIAS(led@)
#define EXT_INPUT_NI DT_NODELABEL(ext_input)

const struct gpio_dt_spec led = GPIO_DT_SPEC_GET(LED_NI, gpios);
const struct gpio_dt_spec ext_input = GPIO_DT_SPEC_GET(EXT_INPUT_NI, gpios);

int main(void) {

gpio_pin_configure_dt(&led, GPIO_OUTPUT_INACTIVE);
gpio_pin_configure_dt(&ext_input, GPIO_INPUT);

while (true) {
if (gpio_pin_get_dt(&ext_input)) {
gpio_pin_set_dt(&led, 1);
} else {
gpio_pin_set_dt(&led, 0);
}

Your Turn

None today. Enjoy your weekend.

11

	EN 173 Lab Guides: Lab 6

