EN 173 Lab Guides
Lab 4

Version 2025, 2025-01-20

Setting multiple pins on a GPIO port

We can think of the four internal LEDs on the nRF52840 DK as representing a 4-bit number because
each LED as only two states (on and off). The value represented by a particular LED when it is
turned on is given in Table 1. The advantage of this representation is that it becomes possible to set
the state of all four LEDs with a single command rather than four commands that individually set
each LED. All possible on-off combinations of the LEDs can be represented by an integer between 0
and 15. For example, the value of 10 (which can be expressed as 8+2) represents led3 and led1
turned on and the other two LEDs turned off.

Table 1. A series of LEDs can be represented as bits.

LED Value as Power of 2 Value
ledo 2° 1
led1 2! 2
led2 22 4
led3 2° 8

This approach only works when the pins we wish to group are all connected to the same GPIO
controller. There are two GPIO controller peripherals on the nRF52840 DK, labeled port 0 and port
1. This approach is also easier when the pins we wish to control have consecutive pin numbers. The
four internal LEDs are connected to pins 13, 14, 15, and 16 of port 0 so we can use this method.

We only want to impact those particular pins and not others so a mask is used to specify that. There
are 32 pins so a 32-bit integer is sufficient. The pins we wish to control are set to 1 in the mask and
those to be left alone have a mask value of 0. Zephyr has a variable type gpio_port_value_t that
more clearly tells the reader of the code that this particular integer is being used to store pin-by-pin
values.

17 16 15 14 13 12
O|1(1T|1(1]0
pins to control

pins to ignore

Figure 1. The internal LEDs are connected to pins 13-16 so those bits are set to 1 in the the port mask so
they can be controlled without impacting other pins on the port.

Zephyr also provides a macro called BIT that make setting these bits easier. The macro BIT(13)
creates an integer in which bit 13 is set to 1 and the others are 0. We then combine those integers
using C’s bit-wise OR operator, |. In a bit-wise operation the corresponding bits of the two numbers
are compared. With bit-wise OR, a bit is 1 in the resulting integer if either of the two inputs had that
bit set to 1.

1. Create a new application called led-rotator.

2. Enter the following code into main.c.

Program 1. Set state of multiple LEDs with single command.

#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>

#define SLEEP_TIME_MS 500

/* Get node identifier for the port rather than a particular pin */
#define PORTO_NI DT_NODELABEL(gpio@)

/* Get device (more general than get a GPIO) */
const struct device *port = DEVICE_DT_GET(PORT@_NI);

int main(void) {
int led_on;
gpio_port_value_t led_mask = BIT(13) | BIT(14) | BIT(15) | BIT(16); @®

if (device_is_ready(port)) {
for (int pin = 13; pin <= 16; pin++) {
gpio_pin_confiqure(port, pin, GPIO_OUTPUT_ACTIVE | GPIO_ACTIVE_LOW); @
}

} else return -1;

while (true) {
led on = 0;
while (led_on < 4) {
gpio_port_set_masked(port, led_mask, BIT(led_on) << 13); ®
k_msleep(SLEEP_TIME_MS),
led_on++;

@ This operation results in an integer with bits 13-16 set to 1 and all other bits set to zero.

@ We are directly accessing the pin rather than using its devicetree configuration. This means
we need to explicitly specify information that was previously done for us through that
configuration. In this case, the LEDs on the development board are connected so that they
are active (on) when the voltage is low.

® The left-bit-shift operator, <<, is used to move our four-bit led value to the left by 13 bits so it
is now at bits 13-16 (the location of the pins on the port).

Add the build configuration through the nRF Connect side bar and build the
application.

. Connect the development board to the computer and then use the btn:[Flash]
action to send the program to it.

. You should observe that LEDs 1 through 4 are lit one at a time and the program
continuously rotates through these.

Reading multiple pins on a GPIO port

We can read the state of all of the pins in a GPIO port, with each pin represented as one bit of a 32-
bit integer. The four buttons are not contiguous (they are at pins 11, 12, 24, and 25) so to determine
whether a particular button is pressed we use bit-wise AND (&) to test whether the corresponding
bit is set. In a bit-wise AND, the resulting integer has the corresponding bit equal to 1 only if both of
the inputs had that bit set to 1.

We are not relying on devicetree configuration of the buttons here so we need to do more than say
that they are inputs. We also need to specify the details of their hardware connection (low voltage
when pressed, with an internal pull-up resistor required to create the proper logic).

1. Create a new application called read-all-buttons.

2. Enter the following code into main.c.

Program 2. Get state of multiple buttons with single command.

#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>

#define PORTO_NI DT_NODELABEL(gpio®)
const struct device *port = DEVICE_DT_GET(PORTO_NI);

int main(void) {
gpio_port_value_t pin_values;
gpio_port_value_t led_mask = BIT(13) | BIT(14) | BIT(15) | BIT(16);
int leds;

if (device_is_ready(port)) {
gpio_pin_configure(port, 11, GPIO_INPUT | GPIO_ACTIVE_LOW | GPIO_PULL_UP);
gpio_pin_confiqure(port, 12, GPIO_INPUT | GPIO_ACTIVE_LOW | GPIO_PULL_UP);
gpio_pin_confiqure(port, 24, GPIO_INPUT | GPIO_ACTIVE_LOW | GPIO_PULL_UP);
gpio_pin_confiqure(port, 25, GPIO_INPUT | GPIO_ACTIVE_LOW | GPIO_PULL_UP);
for (int pin = 13; pin<=16; pint++) {
gpio_pin_confiqure(port, pin, GPIO_OUTPUT_ACTIVE | GPIO_ACTIVE_LOW);

}

} else return -1;

while (true) {
gpio_port_get(port, &pin_values);
leds = 0; @
// Zero through four buttons might be pushed so check for each
if (pin_values & BIT(11)) leds = leds | BIT(0); @
if (pin_values & BIT(12)) leds = leds | BIT(1);
if (pin_values & BIT(24)) leds = leds | BIT(2);
if (pin_values & BIT(25)) leds = leds | BIT(3);
gpio_port_set_masked(port, led_mask, leds << 13);

@ Each time through the loop, set the led value variable back to zero.

@ If the button corresponding to a particular LED is pushed, set the bit for that LED to 1.

3. Add the build configuration through the nRF Connect side bar and build the application.
4. Connect the development board to the computer and then flash the program to it.

5. You should observe that LEDs 1 through 4 are lit when the corresponding button is pushed. It is
possible to have multiple LEDs lit at the same time if multiple buttons are simultaneously
pushed down.

Seven-segment display

A seven-segment display is a collection of LEDs that is designed to display a decimal digit when the
appropriate segments are activated. We are using a LIGITEK LSD3211 that has the pin configuration
shown in Figure 2.

pin 1
f a
g b
gnd
gnd
e dp

d @ c

Figure 2. Connection diagram for the LIGITEK LSD3211 seven-segment display.

1. Place the seven-segment display in a breadboard, being sure that it straddles the trench (so pins
on the left side are not connected to pins on the right side).

2. Next, connect the microcontroller ground (one of the pins labelled GND) to the ground bus strip.
3. Connect both of the pins labeled gnd on the seven-segment display to the ground bus strip.

4. Next, connect the nRF52840 DK pins P1.01 through P1.07 to the seven-segment display pins,
starting with a and going through g. We will leave dp unconnected.

5. After you have assembled this circuit on the breadboard, create a new application.

6. No devicetree overlay is required because we are using direct GPIO port writes. The
disadvantage is that the documentation of which pins are being used is less clear.

7. Enter Program 3 into main.c.

Program 3. Show digits 0 to 3 on seven-segment display.

#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>

#define SLEEP_TIME_MS 750

#define PORT1_NI DT_NODELABEL(gpio1)
const struct device *port = DEVICE_DT_GET(PORT1_NI);

int main(void) {
int pin_mask = BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7);
int display;

if (device_is_ready(port)) {
for (int pin = 1; pin <= 7; pin++) {
gpio_pin_configure(port, pin, GPIO_OUTPUT_INACTIVE);
}

} else return -1;

while (true) {

for (int i = 0; i<4; i++) {
switch(i) {

case 0: display

case 1: display

case 2: display

case 3: display

0x3F; break;
0x06; break;
0x5B; break;
O0x4F; break;

+
gpio_port_set_masked(port, pin_mask, display << 1);

k_msleep(SLEEP_TIME_MS);

8. Build the application and flash it to your microcontroller. If everything has been done correctly,
you should see the digits 0 through 3 displayed one at a time.

Introduction to functions

The basic format of a program to control a seven-segment display with a function to convert digits
to hex codes is shown in Program 4. We will use functions for sections of code that might be reused
in other contexts and/or to break code into units that make the logic more transparent.

Program 4. Shell of a program with function

#include <zephyr/kernel.h>
#include <zephyr/drivers/gpio.h>

#include <zephyr/device.h>
#include <zephyr/devicetree.h>

int sevenSegConvert(int n);
#define SLEEP_TIME_MS 750

#define PORT1_NI DT_NODELABEL(gpio1)
const struct device *port = DEVICE_DT_GET(PORT1_NI);

int main(void) {
int pin_mask = BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5) | BIT(6) | BIT(7);
int display;

if (device_is_ready(port)) {
for (int pin = 1; pin <= 7; pin++) {
gpio_pin_configure(port, pin, GPIO_OUTPUT_INACTIVE);
}

} else return -1;

while (true) {
for (int i = 0; i<=9; i++) {
gpio_port_set_masked(port, pin_mask, sevenSegConvert(i) << 1);
k_msleep(SLEEP_TIME_MS);

}

int sevenSegConvert(int n) {
// function code

return display;

}

Exercise 4.1

Fill in the details of the sevenSegConvert function in Program 4 so it returns the correct control
values for the digits 0 through 9.

o When your program and circuit are working successfully, demonstrate this to
the instructor.

Your Turn

The directions that follow are intended for students in my Introduction to
Embedded Systems course at Whitworth University. However, an alternative link to
a template is provided for non-Whitworth students.

https://www.whitworth.edu

Assignment 4.1

Your task is to create a system that counts “letters” using a photointerrupter, displaying the
count on a seven-segment display. If a count greater than 9 occurs, turn on an internal LED to
indicate that the true count is 10 plus whatever is displayed on the seven-segment display. This
allows your application to indicate counts up to 19. An internal button is used to send a log
message with the total count and then reset the count to zero.

1. Access the GitHub Classroom link for this assignment on Blackboard and create a
repository for your work.

If you are not a Whitworth student in EN 173 you may access a starting
template at https://github.com/EmbedUni/lab04-yt1. You will want to click
on the [Use this template] button.

N

. A code repository was created when you accessed the assignment. Copy the URL for the
repository.

3. Open the Source Control side bar in VS Code and clone the repository.

4. Generate a build configuration and devicetree overlay. In the overlay file, add the code
needed to configure the photointerrupter.

Edit the prj.conf file to include the necessary settings for logging.
Assemble the photointerrupter circuit on a breadboard.
Assemble the seven-segment display circuit the same breadboard.

Modify main.c so it accomplishes the task described above.

© ©® N o

Test your program.

10. Update the README . md.

When your program and circuit are working successfully, remember to push
o the commits to the remote repository. Also, take a video of its successful
operation and upload this to Blackboard.

https://github.com/EmbedUni/lab04-yt1

	EN 173 Lab Guides: Lab 4

